Controlled information integration and bayesian inference

نویسنده

  • Peter Juslin
چکیده

One of the oldest hypotheses in cognitive psychology is that controlled information integration1 is a serial, capacityconstrained process that is delimited by our working memory resources, and this seems to be the most uncontroversial aspect also of present-day dual-systems theories (Evans, 2008). The process is typically conceived of as a sequential adjustment of an estimate of a criterion (e.g., a probability), in view of successive consideration of inputs to the judgment (i.e., cues or evidence). The “cognitive default” seems to be to consider each attended cue in isolation, taking its impact on the criterion into account by adjusting a previous estimate into a new estimate, until a stopping rule applies (e.g., Juslin et al., 2008). Considering each input in isolation, without modifying the adjustments contingently on other inputs to the judgment, invites additive integration. The limits on working memory moreover contribute to an illusion of linearity. If people, when pondering the relationship between variables X and Y, are constrained by working memory to consider only two X–Y pairs, the function induced can take no other form than a line. As illustrated by many scientific models, with computational aids people can capture also non-additive and non-linear relations. But without support, this is rather taxing on working memory and additive integration, typically as a

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza

Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

Comparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers

To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015